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A B S T R A C T

Although detectors currently perform well in well-light conditions, their accuracy decreases due to insufficient 
object information. In addressing this issue, we propose the Re-parameterization Forward Semantic Compen
sation Network (RFSC-Net). We propose the Reparameterization Residual Efficient Layer Aggregation Networks 
(RSELAN) for feature extraction, which integrates the concepts of re-parameterization and the Efficient Layer 
Aggregation Networks (ELAN). While focusing on the fusion of feature maps of the same dimension, it also 
incorporates upward fusion of lower-level feature maps, enhancing the detailed texture information in higher- 
level features. Our proposed Forward Semantic Compensation Feature Fusion (FSCFF) network reduces inter
ference from high-level to low-level semantic information, retaining finer details to improve detection accuracy 
in low-light conditions. Experiments on the low-light ExDark and DarkFace datasets show that RFSC-Net im
proves mAP by 2% on ExDark and 0.5% on DarkFace over the YOLOv8n baseline, without an increase in 
parameter counts. Additionally, AP50 is enhanced by 2.1% on ExDark and 1.1% on DarkFace, with a mere 3.7 ms 
detection latency on ExDark.

1. Introduction

In recent years, object detection has made remarkable progress and 
has been widely applied in various fields. However, while most current 
detectors [1–5] achieve satisfactory detection performance under 
normal lighting conditions with abundant feature information, they 
exhibit poor detection accuracy in low-light or dark environments where 
feature information is insufficient. Low-light scenarios are an inevitable 
occurrence in practical situations, such as at night, on overcast or rainy 
days, and under shadow conditions. Therefore, it is particularly impor
tant to enhance research on object detection in low-light environments.

In low-light conditions, the noise of the camera sensor increases 
significantly, resulting in a substantial decrease in image contrast. The 
gray level difference becomes smaller between the object and the 
background and affects the detection accuracy. In the process of forward 
propagation of images, multiple down sampling operations are per
formed to obtain high-level semantic information. However, some 

information of image is lost during feature extraction. Due to noise and 
insufficient feature information, the detected objects are often mistaken 
for the background and considered invalid so that not learned. However, 
this information is crucial for the precise identification and localization 
of the objects. Therefore, we consider preserving feature information: if 
we minimize the discard of shallow feature information during forward 
propagation, will it significantly improve the accuracy of the detector? 
Following this guiding philosophy, we design the RFSC-Net forward 
semantic compensation network. The primary design concept is to 
continuously compensate for the lost shallow information in the higher- 
level feature maps during the forward propagation process of the feature 
extraction network. To mitigate the influence of high-level semantic 
information on low level semantic information, we reduce the fusion of 
high-level feature maps into low-level feature maps in the feature 
network. Additionally, to enhance the representational capability of 
feature maps while maintaining inference efficiency, we adopt multi- 
branch structure and re-parameterization techniques.
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Currently, the main stream real-time detection algorithms primarily 
adopt single-stage detectors, such as the YOLO [1–4,6–9] series, which 
are based on Convolutional Neural Networks (CNN). Simultaneously, 
detectors that integrate Transformers [5] and Mamba [10] are gradually 
being applied to real-time detection. These detection algorithms typi
cally start by extracting features through a lightweight backbone 
[11–18], and then the resulting multi-scale feature maps are fed into a 
feature fusion network [19–22] for multi-scale feature fusion. A sub
stantial amount of research indicates that the combined use of back
bones and feature fusion networks can significantly enhance detection 
accuracy. The backbone initially extracts features from the original 
image, obtaining feature maps of different scales at various stages. These 
multi-scale feature maps are then fed into the feature fusion network for 
integrating features across different scales. The use of the feature fusion 
network markedly increases the detection precision, which is important 
for accurately obtaining the final object semantic information.

In the backbones of the aforementioned detectors, downsampling 
methods that increase the number of feature map channels are used to 
obtain features at different scales. After feature extraction is completed 
at each stage, the process moves vertically upwards to the next stage for 
further feature extraction. As the depth of the network increases, the 
network is able to capture higher-level semantic information. Under 
normal circumstances, semantic information extracted from low-level 
feature maps aids in the detection of small objects, information extrac
ted from high-level feature maps is focused on the detection of large 
objects. Although this feature extraction method can capture the vast 
majority of valid information, it may lose some detailed information. 
Because, in the process of downsampling, higher-level semantic infor
mation is obtained, and the most important information from the pre
vious stage relative to the current stage is retained. To address this issue, 
we propose RSELAN to extract image features, which utilizes re- 
parameterization convolution to enhance the feature extraction capa
bility of the network. It performs weighted fusion between adjacent 
scale feature maps to increase the effect of integration among them. 
Thus, more beneficial shallow semantic information is retained during 
the process of feature extraction.

In the existing feature extraction networks, the Feature Pyramid 
Network (FPN) [19] is the most widely used. FPN integrates adjacent 
feature maps through top-down upsampling and lateral connections, 
combining the characteristics of high-level feature maps with rich se
mantic information and low-level feature maps with detailed spatial 
information, resulting in new feature maps that are enriched with more 
comprehensive semantic information. In order to give high-level feature 
maps more precise positional information, the Path Aggregation 
Network (PANet) [21] is developed based on the FPN. PANet has shown 
excellent performance across various datasets and is widely used in most 
detectors today. Adaptive Spatial Feature Fusion (ASFF) [22] filters the 
information from different feature maps, alleviating semantic conflicts 
caused by scale inconsistencies. Although ASFF can address the problem 
of conflicting information at the same location, when aligning high-level 
feature maps with low-level feature maps, the richer semantic infor
mation in the high-level feature maps and the larger size of the objects 
make them easier to detect, leading to cases where the low-level feature 
maps consider the objects in the high-level maps as primary information. 
Moreover, because the objects in the high-level feature maps are large, 
there is also a situation where the objects in the high-level feature maps 
are considered as background by the low-level feature maps. In response 
to these issues, we propose a Forward Space Adaptive Compensation 
Feature Fusion Network (FSCFF), based on the integration of PA-FPN 
and ASFF. This method fully fuses high-level feature maps with low- 
level ones, conducting forward feature fusion for each layer. It only al
lows low-level feature maps to adaptively spatially merge with high- 
level feature maps, preventing high-level features from dominating in 
the low-level feature maps.

To balance accuracy and real-time performance, we select YOLOv8n 
as the baseline model. We make modifications to its backbone and 

feature extraction networks to validate the effectiveness of the forward 
semantic compensation concept. For this purpose, we conduct extensive 
experiments. The experiments in this paper were conducted on the low- 
light dataset ExDark [23], where we used the detection results of 
YOLOv8n [4] as the baseline, and conducted extensive comparative and 
ablation studies on the backbone and feature fusion network of RFSC- 
Net. RFSC-Net has a 2% higher mAP than the baseline model on the 
ExDark dataset, and its AP50 is 2.1% higher than that of the baseline. 
Additionally, the inference latency per image is only 3.7 ms, while the 
number of parameters remains unchanged compared to the baseline 
model. To verify the generalizability of our model, we also conduct 
experiments on the COCO [24] and VOC [25] datasets, where the final 
mAP surpasses the baseline model by 1.9% and 2.5% respectively. On 
the small object dataset VisDrone [26], the mAP and AP50 exceed the 
baseline by 1.6% and 2.3% respectively. On the small object detection 
dataset DarkFace [27,28] under dark conditions, the mAP and AP50 are 
0.5% and 1.1% higher than the baseline model, respectively.

We summarize the work of this paper as follows:

• To address the issue of losing detailed information from shallow 
feature maps when backbone extracts features upward, we utilize re- 
parameterization convolution to enrich feature extraction. Addi
tionally, we adopt a multi-branch structure to enhance the repre
sentation ability of the network, designing RSELAN for image feature 
extraction.

• In order to solve the problem that the importance of correct object 
semantic information weakens due to the fusion of high-level feature 
maps and low-level feature maps, we propose FSCFF, which not only 
solves the aforementioned problem but also takes into account the 
semantic loss and full integration of high-level and low-level feature 
maps during forward propagation.

• Extensive experimental results on the ExDark dataset have shown 
that RFSC-Net surpasses many of the most advanced real-time 
detection networks under almost same parameter counts and 
computation conditions. Additionally, it also performs well on the 
COCO, VOC, VisDrone, and DarkFace datasets.

2. Related work

2.1. Multi-branch feature extraction

The concept of residuals proposed by ResNet [29] addresses the 
degradation phenomenon that occurs as deep neural networks deepen. 
By incorporating shortcut connections, a linear transformation is added 
to the nonlinear neural network, allowing the network to possess both 
linear and nonlinear transformation capabilities. This ensures that the 
network can more easily map back to the original data during back
propagation. Under the guidance of residual thinking, a large number of 
efficient classification networks [11–15] have emerged. DenseNet [30] 
connects every feature map with a backward shortcut, achieving feature 
reuse. MobileNetV2 [11] and MobileNetV3 [12] introduced the inverted 
residual structure and the inverted residual structure augmented with 
Squeeze- and- Excitation (SE) [31]. ShuffleNetV1 [13] uses group 
convolution (GConv) and depthwise separable convolution (DWConv) 
to replace the standard 1 × 1 and 3 × 3 convolutions, respectively, and 
introduces a channel shuffle operation to facilitate intergroup infoma
tion exchange. ShuffleNetV2 [14], building on the foundation of Shuf
fleNetV1, proposes four efficient design principles, providing effective 
guidance for the design of neural network architectures. VoVNet [32] 
proposes a One-Shot Aggregation module (OSA) to remove a large 
amount of redundant feature information, retaining connections with 
distinct feature information, thereby reducing memory access costs and 
enhancing the detection performance of the model. CSPNet [33] splits 
the gradient flow, allowing it to propagate through different network 
paths, achieving a rich combination of gradients with low computational 
cost, and enhancing the learning capability of Convolutional Neural 
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Networks (CNN). ELAN [34] reduces the use of transition layers and 
increases the minimum gradient path length, thus allowing the network 
to maintain good accuracy even at greater depths. RepVGG [35] em
ploys reparameterization for multi-branch training and single-branch 
inference, resulting in a high-performance, fast network. Building on 
the ideas of re-parameterization and ELAN, by incorporating a forward 
information compensation branch, we propose RSELAN, which com
bines multi-branch with re-parameterization, featuring both lightweight 
and high-performance advantages.

2.2. Multi-scale feature fusion

FPN [19] has emerged as the predominant approach for multi-scale 
feature fusion. The top-down connections in FPN greatly enhance the 
representational capacity of feature maps. Following FPN, a large 
number of multi-scale feature fusion methods have emerged. PA-FPN 
[21] adds a topdown fusion path on the basis of FPN, integrating 
detailed information from lower-level features into higher-level fea
tures. NAS-FPN [36] uses neural architecture search (NAS) to obtain 
more efficient feature fusion connection methods. RFB [37] increases 
the spatial distribution and eccentricity of receptive fields by simulating 
receptive fields of human vision. BiFPN [20] proposes the idea of effi
cient bidirectional cross-scale connections and weighted feature fusion, 
merging high-level features with low-level features effectively. ASFF 
[22] proposes an adaptive feature fusion method to address the problem 
of inconsistent feature fusion scales. FPT [38] enables feature maps of 
different scale to capture non-local information of objects at various 
scales through self-attention mechanisms applied to different feature 
maps. DetectoRS [39] adopts the Recursive Feature Pyramid (RFP) to 
feed back fused features into the feature maps extracted by the back
bone, achieving looking and thinking twice and utilizing a feedback 
mechanism to capture hidden information. Our proposed FSCFF in
tegrates shallow features with deep features in the forward propagation 
process, which alleviates the problem of losing high-level semantic in
formation in deep feature maps.

2.3. Real-time object detector

YOLO series detectors [1–4,6–9], the most widely used single-stage 
real-time detectors at present, which are mainly divided into two 
types: anchored and unanchored, and have always dominated the real- 
time detection mission. They generally use CSPNet [33] or ELAN [34] 
as the backbone for feature extraction of images. The images are pro
cessed through a feature extraction network to obtain multi-scale 
feature maps, which are then fused across different scales using FPN 
or an enhanced version of FPN. Finally, the fused multi-scale feature 
maps are sent to the detection head for prediction. Anchor-based de
tectors [1–5] use a coupled detection head for prediction, while anchor- 
free detectors [5,40] generally use a decoupled detection head. 
Recently, many end-to-end detectors based Transformers, such as DETR 
[40] and Deformable DETR [5], have emerged. They employ a bipartite 
graph matching algorithm to match each predicted object with a real 
label on a one-to-one basis, directly obtaining the category and location 
information of the object. This eliminates the time-consuming Non- 
Maximum Suppression (NMS) process in traditional object detection. 
However, these types of detectors converge slowly, and they require a 
large amount of computation and parameters, making the training very 
costly. Without corresponding pre-trained models, it is difficult to apply 
them in relevant fields. In the field of real-time detection, the DETR 
series can not yet replace the YOLO series. Therefore, we choose the 
framework of YOLOv8 [4] as the baseline to improve, use RSELAN as the 
backbone for feature extraction and FSCFF as the feature fusion network 
for feature fusion, resulting in a new real-time detector RFSC-Net.

3. Method

In this section, we provide a detailed introduction to RFSC-Net. The 
overall structure of RFSC-Net is shown in Fig. 1, consisting of a feature 
extraction network RSELAN, a multi-scale feature fusion network 
FSCFF, and a prediction head. Based on the YOLOv8n structure, we 
make improvements to the backbone and the multi-scale feature fusion 
network. Now, we will focus on RSELAN and FSCFF, describing their 
internal structures.

3.1. The design of the RSELAN structure

3.1.1. The design of RepELAN
RepELAN adopts a multi-branch structure design similar to ELAN, as 

depicted in Fig. 1. The multi-branch design allows gradients to flow 
through multiple paths, enhancing gradient propagation, reducing 
gradient vanishing, and strengthening the network's ability to process 
and receive gradients, enabling it to become deeper. What's more, 
different branches learn different features during feature learning, 
avoiding the model falling into local optimum. Using a multi-branch 
structure for feature extraction can capture features of different recep
tive field sizes, increasing the diversity of feature learning.Typically, 
during model training, multi-branch convolution is used to enhance the 
non-linear capabilities of network and provide diverse connections, 
thereby improving the representational power of the network. However, 
directly using multi-branch convolution to enhance the representational 
capacity of the model also increases inference costs. In contrast, 
RepConv [35] is multi-branch during training but single-branch during 
inference, which increases only the training cost without adding to the 
inference burden. Considering both model accuracy and speed, we 
choose RepConv to replace conventional convolution.

RepELAN inspired by the multi-branch design, drawing mainly from 
the C2f design in YOLOv8 [4], removes the 1 ×1 convolution from the 
firstbranch compared to ELAN and performs multi-branch operations 
post-convolution. We replace the regular 3 × 3 convolution with a 
reparameterized convolution, as shown in Fig. 2 (b), where normal 
Bottleneck uses two regular 3 × 3 convolutions, while DRepBottleneck 
uses two re-parameterization 3 × 3 convolutions followed by a shortcut 
connection.

3.1.2. Feature compensation branch
Due to the insufficient feature information of objects under low light 

conditions, directly using pooling operations for downsampling can lead 
to a reduction in image information and fail to adequately preserve 
detailed information. We use SPD-Conv [41] (Space-to-depth Convolu
tion) for downsampling, as detailed in Fig. 3, which achieves down
sampling by splitting and reorganizing the pixel values of the input 
feature map. Since the pixel values of the feature map do not change, 
this method preserves as much detailed information as possible in the 
lower-level feature maps. After downsampling, dimension alignment is 
achieved through 1 × 1 convolution. The use of SPD-Conv is illustrated 
in RSELAN, as shown in Fig. 1. Before each downsampling convolution 
operation, the SPDConv downsampling operation is performed to retain 
more shallow layer detailed information, which compensates for the 
higher-level feature maps, thereby adding more detailed information to 
the high-level semantic feature maps. Such as edge detailed information, 
texture information of object features, these details which are already 
scarce in low-light environments, are significantly lost after feature 
extraction, and as the network deepens, detailed information is severely 
missing, which will reduce the final detection accuracy. We minimize 
the loss of details during forward propagation by progressively 
compensating low-level semantic information into high-level feature 
maps.

After obtaining the feature maps of the compensation branch and the 
main branch, it is necessary to fuse the features. General feature fusion 
methods usually perform direct addition operations, which overlooks 
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the varying importance of different feature maps. It is unreasonable to 
assign a higher weight to the feature maps that contribute less. This can 
result in containing less valid information in the fused feature maps, thus 
degrading the performance of object detection. Therefore, we use 
learnable weight feature fusion method (LWFusion), with the specific 
calculation method as follows: 

pi =
∑n

i=0

wi

ϵ + Σjwj
⋅Ii#(1)

the parameter wj is derived from wi through the SiLU activation function. 
Here, wi is a learnable parameter. The ith feature map involved in the 
fusion is represented as Ii. A very small number ϵ, set to 0.0001 in this 
paper, is used to prevent numerical instability. The value n epresents the 
number of feature maps in the fusion, and pi is the resulting feature map 
output after fusion. This normalization method restricts the weight 
values within the range [0–1], avoiding the occurrence of outliers and 
making the training process more stable.

Fig. 1. The RFSC-Net consists of three components: RSELAN, FSCFF, and the Predict Head.

Fig. 2. The architecture of DRBottleneck and RepConv.

W. Zhang et al.                                                                                                                                                                                                                                  Image and Vision Computing 151 (2024) 105271 

4 



3.2. Design of the FSCFF architecture

3.2.1. The design of GCGEALN
This section describes the GCGELAN structure, as showcased in 

Fig. 4. The GELAN [42] structure is a generalized efficient aggregation 
network. It balances lightweight design, inference speed, and detection 
accuracy by combining ideas from CSPNet [33] and ELAN [34]. Inter
nally, GELAN uses RepConv to replace regular convolution, enhancing 
the richness of feature extraction. Within GELAN, a RepNCSP structure 
is utilized. The detailed architecture of RepNCSP is depicted in Fig. 5. 
RepNCSP uses reparameterization convolution within CSPDarkNet. The 
RepBottleneck structure is illustrated in Fig. 2 (c). It replaces the first 
regular convolution in the Bottleneck with a RepConv, thus adding only 
a minimal training cost without increasing inference expenses.

The design of GELAN [42] allows the branches inside RepNCSP to 
access multi-branch feature information and extract richer semantic 
information. However, for the two branches that have not undergone the 
RepNCSP structure, they are connected by identity, without any feature 
transformation operations. For these two branches, the retained infor
mation tends more towards the original input information. Since the 
original feature map contains a lot of information, during the feature 
fusion stage, it is not necessary to extract as much information as in the 
feature extraction network. Instead, it should focus more on which 
features to fuse and how to perform the fusion. The GELAN network has 
considered the question of how to do the fusion, but has not chosen 

which features to integrate. Therefore, we conduct a screening of the 
input feature maps to allow the model to focus on important information 
and reduce focus on secondary information. Based on this idea, we 
designed three structures using a Global Context (GC) [43] attention 
mechanism to filter features. The specific locations where GC is added 
are shown in Fig. 4. A structural diagram of GC can be found in Fig. 6.

3.2.2. Integration of features at the same scale
The top-down information flow pathway in the FPN [19] network 

allows the lower-level feature maps to contain the high-level semantic 
information found in upper-level feature maps, enriching the semantic 
information in the lower-level feature maps. Building on the FPN 
network, PANet [21] adds a bottom-up pathway that integrates the 
precise location information contained in lower-level feature maps into 
the upper-level feature maps, compensating for the lack of positional 
information in the higher-level feature maps. After feature fusion 
through PA-FPN, both low-level and high-level feature maps contain 
rich semantic and positional information. In the process of bidirectional 
feature fusion by PA-FPN, due to the increase in propagation paths, there 
is also an increase in feature loss. Although it fuses with the feature maps 
of the same scale in the FPN path each time, the PANet path is relatively 
deeper compared to the initially ex- tracted feature maps. Therefore, 
using only a fusion may not be sufficient to compensate for the feature 
loss. Therefore, in the three feature maps of the bottom-up path output 
in PA-FPN, we use identity connections on the two higher-level feature 

Fig. 3. The structure of SPD-Conv.

Fig. 4. The architecture of GCGELAN: (a) GELAN, (b) integrate a Global Context (GC) block antecedent to the Chunk processing stage, (c) applies a GC block 
subsequent to the Concatenation operation and (d) implements a GC block in a parallel fashion with respect to the primary computational branch.
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maps output by PA-FPN to increase the degree of fusion of the output 
feature maps. The type of connection is shown in Fig. 1 as a Skip 
Connection. The feature fusion operation used is the same as the method 
of the feature extraction network, adopting the LWFusion method, 
which achieves a greater degree of feature fusion at a minimal cost.

3.2.3. The design of ASFFLH
The output results of PA-FPN are used as the input for ASFFLH, 

whose process flowchart is shown in Fig. 7. ASFFLH first scales the 
feature maps from different layers to the same size, and then performs 
adaptive fusion on the scaled feature maps. The number of channels and 
the size of the feature maps after adaptive fusion are the same as the 
input of this layer. Since the data flow in feature fusion is only from 
bottom to top, which means, from larger feature maps to smaller scale 
feature maps for information compensation, there is only downsampling 
during feature map scaling, with no upsampling involved. For feature 
maps that are downsampled by a factor of two, we use a 3 × 3 convo
lution kernel with a stride of 2. For feature maps that are downsampled 
by a factor of four, maximum pooling is first used for one scaling, fol
lowed by downsampling using a convolution kernel with a stride of 2 
and a size of 3 × 3. After scaling the feature map size for channel 
alignment, all feature maps are subjected to channel compression. A 
general practice is used here, employing a convolution kernel of size 1 ×
1 with a stride of 1, compressing the number of channels in all feature 
maps to the same amount. The number of channels we set is the same as 
the implementation in ASFF [22], using eight channels. After scaling, 
the low-level feature maps are adaptively fused with the high-level 
feature maps, as shown in the ASFFLH2 and ASFFLH3 modules in 
Fig. 7. The fusion formula is as follows: 

yl
ij =

∑l

k=0
αk→l

ij ⋅xk→l
ij (2) 

here l ≥ 1, where l is the layer number, k represents the feature map 
from the kth layer, xk→l

ij is the feature map resized from the kth layer to the 
lth layer, with ij as spatial coordinates, αk→l

ij is the weight of each position 
in the feature map, and yl

ij is the output feature map after fusing the 

feature maps of lth layer. The calculation formula for αk→l
ij is as follows: 

αk→l
ij =

eαk→l
ij

∑l

k=0
eαk→l

ij
(3) 

the calculation of is completed through the Softmax activation function. 
After normalization, the range of the weight is restricted to the interval 
[0–1], making the process more stable.

At l = 0, the shallowest feature map is obtained, which does not 
undergo feature fusion with other layers. Therefore, the aforementioned 
adaptive fusion operations for feature compensation are not conducted. 
Given the characteristics of the feature map at layer 0, lower-level 
feature maps have a lesser degree of feature fusion. In the PA-FPN 
process, only one GCGELAN fusion process is conducted, and the 
feature map of this layer might have insufficient feature fusion. In the 
layer 0 of ASFFLH, fusion operation is performed again to enhance the 
degree of feature information fusion. Considering that the objects in the 
lower-level feature maps are smaller, retaining more detailed informa
tion helps improve detection accuracy. Therefore, no attention mecha
nism is used during fusion to maintain uniformity with the structure in 
PA-FPN. For instance, if GCGELAN is used in PA-FPN, then the fusion 
module used in the layer 0 of ASFFLH would be GELAN without GC 
attention.

Fig. 5. The structure of RepNCSP.

Fig. 6. The Global Context (GC) block structure consists of two parts: the 
Context and the Transform structures.
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After the feature maps pass through the ASFFLH, they are once again 
merged with the shallow feature maps, thereby enriching the feature 
information in the high-level feature maps. For the lowest layer feature 
maps, after passing through GELAN, the features in the feature maps are 
more fully integrated.

4. Experiments

4.1. Experimental setup

Implementation details: This paper evaluates experiments conducted 
on ExDark, and generalization experiments on VisDrone, DarkFace, 
COCO 2017, and PASCAL VOC 2007 + 2012. Table 1 shows the number 
of categories as well as the training and validation sets for each dataset. 
We train all the models from scratch, standardizing the training for 300 
epochs with a batch set to 32. The optimizer uses Stochastic Gradient 
Descent (SGD) with weight decay, setting the weight decay rate at 0.005 
and the initial learning rate at 0.01. Warmup is used for the learning rate 
during the first three epochs, followed by a linear change in the learning 
rate thereafter. In the preprocessing, data augmentation techniques such 
as Mosaic, MixUp, Random HSV, Random Affine, and Horizontal Flip are 
used, with the Mosaic data augmentation off in the last 10 epochs. Our 
experiments are conducted on GeForce RTX 2080 Ti.

Evaluation Metrics: We use mean Average Precision as the evalu
ation metric for experiment, which includes mAP and AP50. Addition
ally, the parameters (Params), Giga Floatingpoint Operations Per 
Second (GFLOPs), and Latency of the model are assessed.

4.2. Comparison experiment

Comparison of lightweight feature extraction networks: Table 2
shows a comparison of RSELAN with different lightweight backbones in 
RFSC-Net, achieving the highest accuracies of 44.0% and 69.3% 
compared to other backbones trained from scratch. In comparative ex
periments, GhostNetV2 1.0×, based on the CNN method, has the highest 
detection accuracy among the backbones. RSELAN exceeds GhostNetV2 
1.0× by 0.4% in mAP and 0.6% in AP50, while the overall model has 
less than half the parameters of GhostNetV2 1.0× and requires 0.2 G less 
in computational resources. Compared to MobileNetV2 0.5× [11], 
which has the lowest number of parameters, RSELAN achieves a 1.3% 

Fig. 7. Adaptive Spatial Feature Fusion Mechanism from Low-level Semantics to High-level Semantics (ASFFLH) requires scaling the features of other layers entering 
each layer to the same size, and then fusing them based on learnable weight.

Table 1 
Sizes and Number of Categories of Training and Validation Sets in Different 
Datasets.

Dataset Training 
Set

Validation 
Set

Number of 
Classes

Exdark [23] 5890 1473 12
VisDrone [26] 6471 548 10
DarkFace [27] 4800 1200 1
COCO 2017 [24] 118,287 5000 80
PASCAL VOC 2007 + 2012 

[25]
16,551 4952 20

Table 2 
Comparison of Different Lightweight Backbones in RFSC-Net.

Backbone Params 
(M)

FLOPs 
(G)

mAP AP50

CSPDarknet [33] +FSCFF 4.4 10.8 42.8% 68.2%
MobileNetV2 0.5× [11] + FSCFF 2.6 8.1 42.7% 67.6%
MobileNetV2 0.75× [11] + FSCFF 3.3 9.6 42.6% 67.6%
MobileNetV3-Small 1.0 [12] +

FSCFF
3.0 8.0 40.7% 64.6%

ShuffleNetV1 0.5× [13] + FSCFF 2.9 8.2 36.1% 59.9%
ShuffleNetV1 1.0× [13] + FSCFF 3.6 10.2 38.2% 62.6%
ShuffleNetV2 1.5× [14]+ FSCFF 4.4 11.7 40.6% 65.1%
ShuffleNetV2 1× [14] + FSCFF 3.2 9.2 39.6% 63.9%
FasterNet-T0 [17] + FSCFF 4.5 12.4 39.0% 63.6%
GhostNetV2 1.0× [16] + FSCFF 6.5 10.3 43.6% 68.7%
MobileViT-XXS [15] + FSCFF 3.6 11.7 43.7% 68.9%
RepViT-M0.6 [18] + FSCFF 4.5 13.6 40.3% 65.4%
RSELAN + FSCFF (Ours) 3.0 10.1 44.0% 69.3%
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and 1.7% increase in mAP and AP50 respectively, with only an addi
tional 0.4 M parameters. Among lightweight Vision Transforms, RepViT 
[18] and MobileViT [15] are two of the better-performing backbones. 
Additionaly, RSELAN exceeds Mobile ViT-XXS by 0.3% in mAP and 
0.4% in AP50, while also reducing the computational load by 1.6 G. 
RSELAN achieves the highest accuracy with parameter counts and 
computational load comparable to other backbones.

Comparison of multi-scale feature fusion: Table 3 shows a com
parison between FSCFF in RFSC-Net and the current generally used 
multi-scale feature fusion methods. Using the C2f structure from the 
baseline in the feature fusion network for comparison. Compared to 
other feature fusion methods, it achieves the highest mAP of 44.0% and 
AP50 of 69.3% on the low-light dataset ExDark. Compared to PA-FPN 
[19], the mAP and AP50 of FSCFF increased by 2.0% and 1.5%, 
respectively, with only a 0.3 M increase in the number of parameters. 
The feature fusion network used in ASFF [22] is a combination of FPN 
and ASFF. Compared to using FPN for feature fusion, the mAP and AP50 
using FSCFF improved by 3.9% and 3%, respectively.

Comparison of attention mechanisms: The effects of using 
different attention mechanisms in GCGELAN are compared in Table 4: 
channel attention, coordinate attention, serial channel-space attention, 
and parallel channel-space attention. The results indicate that the 
attention mechanism plays a crucial role in final detection accuracy, and 
using the appropriate attention method will significantly improve 
recognition accuracy. Among the four types of attention mechanisms, 
channel attention, coordinate attention, and serial channel-space 
attention perform poorly, showing a significant drop in accuracy 
compared to not using any attention mechanism. The parallel BAM [44] 
perform better than the other three, but there is still a decrease of 0.5% 
in mAP and 0.7% in AP50. GC is the only attention mechanism in all 
tested that surpassed the RFSC-Net without using attention. This sug- 
gests that GC can capture more global, which helps improve detection 
ac- curacy under low-light conditions.

Comparison with various SOTA methods: Table 5 shows a com
parison between RFSC-Net and other real-time detectors trained from 
scratch. With the same number of parameters as YOLOv8n, the mAP and 
AP50 of RFSC- Net increase by 2.0% and 2.1% respectively compared to 
the baseline, with only a 0.4 ms increase in inference speed. Gold-YOLO- 
n achieved an AP50 of 43.7% with a latency of only 2.9 ms. However, 
compared to RSFC-Net, its mAP is 0.3% lower, and its parameters count 
is four times that of RSFC-Net. Compared to YOLOv9t, the mAP of 
RFSCNet improve by 1.5%, and the AP50 is higher 2.3%. Among all the 
models compared, YOLOv9s exhibits the highest accuracy; however, it 
also has significantly more parameters and a higher computational cost 
compared to RFSC-Net. In summary, RFSC-Net strikes a favorable bal
ance between model size, accuracy, and speed compared to the other 
models.

4.3. Ablation study

Ablation among the components of RFSC-Net: We use the archi
tecture of YOLOv8n as the baseline model to verify the effects of 
different structures relative to the baseline model. As shown in Table 6, 
each structure is used in replacement of the base YOLOv8n. Notably, 
RSELAN employs 512 channels in stage 4, which is half the number of 

channels used by the YOLOv8 model. Correspondingly, in the feature 
fusion network, the number of output channels for the High Prediction 
Layer part is also 512. Experimental results indicate that while the mAP 
of RSELAN did not in- crease, the number of channels used in the fourth 
stage of RSELAN is half of that in YOLOv8n. As a result, the parameters 
count of the model is reduced by 0.3 M, and AP50 is increased by 0.6%. 
The use of GCGELAN and RSELAN improves both mAP and AP50. It can 
be seen from the results that the combined use of FSCFF* and GCGELAN 
more effective than using them independently. Overall, different com
binations contribute to the improvement of accuracy, but the combi
nation of the three is the most effective, achieving 44.0% mAP and 
69.3% AP50.

Ablation among the components of RSELAN: In order to verify the 
effect of Feature Compensation Branch, we conduct ablation experi
ments on Feature Compensation Branch in RSELAN, and the results of 
these explorations are presented in Table 7. We conduct experiments 
with different Feature Compensation Branches. From the results of the 
experiments, we can find that preserving shallow semantic information 
has different degrees of benefits for the accuracy of RFSC-Net by using 
Feature Compensation Branches. Among them, the combination of SPD- 
Conv and LWFusion has the best performance, with mAP and AP50 
increasing by 1.1% and 1.4% respectively compared to the case without 
using the feature compensation branch.

Ablation of GC at different locations in GCGELAN: We conduct 
ablation experiments on different positions of GC in GCGELAN, Table 8. 
Compared with not using GC, when GC is placed before and after Res 
NCSP in GCGLEAN, the accuracy is lower than that without using GC. 
We believe that applying the attention mechanism to the features pro
cessed by the RepNCSP branch will lead to overconcentration and in
formation loss. In order to reduce information loss, we only apply the 
attention mechanism to branches that do not pass through RepNCSP. 
The final experimental results show that both mAP and AP50 have 
increased.

Ablation of ASFFLH module: As shown in Table 9, the results of 
using ASFFLH and ASFF in RFSC-Net indicate that the accuracy of using 
ASFF decreases by 0.1% compared to direct prediction. This validates 
our previous hypothesis that the fusion of higher-level semantic infor
mation with lower-level semantics can cause semantic conflicts, thereby 
affecting the predictions at that level. Due to the use of adaptive feature 
fusion, the influence of semantic conflicts is minimal, but the number of 
parameters and computations significantly increases. The fusion of 
ASFFLH improves by 1.1% compared to not using it, and AP50 improves 
by 0.8%. The number of parameters and computations is the same as 
using ASFF, validating that the semantic supplementation from lower- 
level semantics to higher-level feature maps contributes greatly to the 
improvement of final detection accuracy.

Ablation of different blocks in ASFFLH 0th layer: As illustrated in 
Table 10, in the 0th layer of ASFFLH, we experimented with some 
generally used blocks in current lightweight networks. Obviously, from 
the experimental results, GELAN has the highest accuracy. Using blocks 
different from those in feature fusion networks is not conducive to 

Table 3 
Comparison of different multi-scale feature fusion methods in RFSC-Net.

Method Params (M) FLOPs (G) mAP AP50

RSELAN + FPN [21] 1.6 9.3 40.1% 66.0%
RSELAN + PA-FPN [19] 2.7 8.4 42.0% 67.8%
RSELAN + ASFF [22] 2.3 8.7 41.1% 67.5%
RSELAN + BiFPN [20] 2.4 8.3 41.9% 67.6%
RSELAN + AFPN [45] 1.9 7.4 39.3% 63.8%
RSELAN + ResGFPN [46] 2.9 8.6 42.2% 68.4%
RSELAN + FSCFF(Ours) 3.0 10.1 44.0% 69.3%

Table 4 
Comparison of different attentions in GCGELAN.

Attention Module Params (M) FLOPs (G) mAP AP50

GELAN [42] 3.0 10.1 43.7% 68.9%
GEALN+BAM [44] 3.0 10.1 43.2% 68.2%
GEALN+CA [47] 3.0 10.1 42.3% 67.1%
GEALN+ECA [48] 3.0 10.1 42.4% 67.6%
GEALN+ELA [49] 3.0 10.1 42.9% 67.7%
GEALN+EMA [50] 3.0 10.2 42.3% 67.3%
GEALN+GAM [51] 4.3 14.4 41.8% 66.6%
GEALN+SE [52] 3.0 10.1 42.5% 67.5%
GEALN+CBAM [53] 3.0 10.1 42.4% 67.4%
GEALN+ShuffleAttention [54] 3.0 10.1 42.5% 66.9%
GEALN+GC [43] 3.0 10.1 44.0% 69.3%
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improving detection accuracy, verifying what we mentioned in 3.2.3 
that using blocks with consistent overall structure can maximize the 
effectiveness of ASFFLH.

Result visualization: Fig. 9 shows the detection results of RFSC-Net 
with YOLOv8n YOLOv9t and YOLOv10n on ExDark, which significantly 

improves the detection of underrepresented objects compared to other 
models. Additionally, we use GradCAM [57] to visualize the final three 
layers of prediction feature maps, as shown in Fig. 8. Under low light 
conditions, the four detectors have comparable detection performance 
for large objects, but RFSC-Net demonstrates superior performance in 
learning about and small objects.

4.4. Generalization experiment

To validate the generalizability of RFSC-Net, we conduct experi
ments on COCO 2017, PASCAL VOC 2007 + 2012, VisDrone, and 
DarkFace. The experimental results are shown in Table 11. For the small 
object dataset VisDrone, RFSC-Net improves the mAP by 1.6% compared 
to the baseline. On the low-light small object dataset DarkFace, RFSCNet 
also achieves a 0.5% improvement in mAP compared to the baseline. 

Table 5 
Comparison of RFSC-Net with the Latest Real-Time Detectors. Latency is the result of averaging the inference across all validation sets in ExDark. Latency is measured 
on a a GeForce RTX 2080 Ti.

Method Input Size Params(M) FLOPs(G) mAP AP50 Latencybs¼32

YOLOv8n (baseline) [4] 640 3.0 8.1 42.0% 67.2% 3.3 ms
YOLOv3tiny [6] 640 12.1 18.9 33.8% 60.2% 7.6 ms
YOLOv5n 640 1.8 4.2 33.3% 61.3% 2.3 ms
YOLOv5s 640 7.0 15.9 38.0% 67.2% 8.6 ms
YOLOv6n [1] 640 4.6 11.4 42.7% 68.8% 4.3 ms
YOLOXtiny [3] 416 5.0 7.6 33.7% 63.4% 5.4 ms
YOLOv7tiny [2] 416 6.0 13.1 39.6% 67.9% 12.2 ms
YOLOv8s [4] 640 11.1 28.5 43.7% 69.7% 4.0 ms
YOLOv9t [9] 640 2.0 7.6 42.5% 67.0% 2.7 ms
YOLOv9s [9] 640 7.2 26.8 45.7% 71.6% 4.1 ms
YOLOv10n [8] 640 2.7 8.3 41.0% 65.9% 2.4 ms
YOLOv10s [8] 640 8.0 24.5 43.8% 69.8% 3.7 ms
Gold-YOLO-n [55] 640 12.0 5.6 43.7% 70.1% 2.9 ms
RFSC-Net (Ours) 640 3.0 10.1 44.0% 69.3% 3.7 ms

Table 6 
Ablation of different structures in RFSC-Net. FSCFF* refers to the FSCFF that 
uses C2f instead of GCGELAN.

RSELAN GCGELAN FSCFF* Params 
(M)

FLOPs 
(G)

mAP AP50

× × × 3.0 8.1 42.0% 67.2%
√ × × 2.7 8.4 42.0% 67.8%
× √ × 2.8 8.4 42.7% 68.0%
× × √ 4.3 10.0 42.3% 67.7%
√ √ × 2.4 8.6 42.1% 67.2%
√ × √ 4.0 10.3 42.7% 67.8%
× √ √ 4.4 10.8 42.8% 68.2%
√ √ √ 3.0 10.1 44.0% 69.3%

Table 7 
Ablation study of different Feature Compensation Branches in RSELAN. No use 
means that the feature compensation branch is not used.

Method Params (M) FLOPs (G) mAP AP50

No use 2.9 9.8 42.9% 67.9%
AvgPool + LWFusion 2.9 9.9 43.0% 67.6%
MaxPool + LWFusion 2.9 9.9 43.6% 68.9%
SPD-Conv + LWFusion 3.0 10.1 44.0% 69.3%

Table 8 
Ablation of GC at different locations in GCGELAN.

Location Params (M) FLOPs (G) mAP AP50

None 3.0 10.1 43.8% 68.9%
Before 3.0 10.1 42.0% 66.9%
After 3.2 10.3 43.3% 68.8%
Middle (Ours) 3.0 10.1 44.0% 69.3%

Table 9 
Ablation of multi-scale adaptive fusion in RFSC-Net divides the fusion into three 
cases: No use, ASFF, and ASFFLH. No use makes predictions directly after PA- 
FPN.

Method Params (M) FLOPs (G) mAP AP50

No use 2.3 8.6 42.9% 68.5%
ASFF [22] 3.0 10.1 42.8% 68.5%
ASFFLH 3.0 10.1 44.0% 69.3%

Table 10 
Ablation of different blocks in ASFFLH 0th layer. Identity is the act of returning 
the input directly without applying any operations.

Block Params (M) FLOPs (G) mAP AP50

Identity 3.0 9.6 43.2% 68.6%
GCGELAN 3.0 10.1 43.5% 68.9%
C2f [4] 3.0 9.9 43.2% 68.3%
C3 [33] 3.0 9.8 43.7% 69.0%
Residual Block [29] 3.0 9.6 43.4% 68.3%
FasterNet Block [17] 3.0 9.6 42.4% 67.2%
StartNet Block [56] 3.0 10.1 42.3% 67.3%
ELAN [34] 3.0 10.2 43.5% 68.2%
GELAN [42] 3.0 10.1 44.0% 69.3%

Fig. 8. Comparison of RFSC-Net with YOLOv8n, YOLOv9t, and YOLOv10n for 
heatmap prediction.
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Furthermore, on COCO 2017 and PASCAL VOC 2007 + 2012, RFSC-Net 
outperforms the baseline by 1.9% and 2.5% in mAP, respectively. It is 
evident that RFSC-Net is not only effective in low-light condition 
detection but also shows significant improvement on the more chal
lenging DarkFace dataset.

5. Conclusion

This paper introduces RFSC-Net to tackle the problem of detail in
formation loss in images during the forward propagation process. We 
propose a forward information compensation concept to counteract the 

loss of information during the forward propagation process, thus pre
serving sufficient details for the final detection and improving detection 
accuracy. RFSC-Net achieved a 2.0% increase in mAP compared to 
YOLOv8n, without adding more parameters, and the inference speed 
increased by only 0.4 ms.

However, there are still some issues in the current work. We find that 
RFSC-Net reduces the loss of detailed information during the forward 
propagation process, retaining more shallow information. However, due 
to the limited effective information in low-light images, the retained 
detailed features may be discontinuous. Consequently, the detector may 
interpret these discontinuous features as separate objects, leading to a 
single object being misidentified as multiple objects. In addition, 
although retaining more shallow semantic information can provide 
more useful information, it also retains more noise, which can affect the 
judgment of detector and reduce detection accuracy. Directly using 
image enhancement techniques results in a high computational cost. We 
are exploring the possibility of filtering out noise from the retained in
formation in real-time conditions, aiming to enhance the quality of this 
information.

Fig. 9. Comparison of detection results of RFSC-Net with YOLOv8n, YOLOv9t, and YOLOv10n on the ExDark validation set.

Table 11 
The performance of RFSC-Net on different datasets.

Dataset mAP AP50

YOLOv8n RFSC-Net YOLOv8n RFSC-Net

VisDrone 19.4% 21.0% 33.3% 35.6%
DarkFace 19.4% 19.9% 45.8% 46.9%
PASCAL VOC 2007 + 2012 59.1% 61.6% 79.6% 81.0%
COCO2017 36.1% 38.0% 50.8% 52.9%

W. Zhang et al.                                                                                                                                                                                                                                  Image and Vision Computing 151 (2024) 105271 

10 



CRediT authorship contribution statement

Wenhao Zhang: Writing – original draft, Methodology, Investiga
tion, Formal analysis, Conceptualization. Huiying Xu: Writing – review 
& editing, Funding acquisition. Xinzhong Zhu: Supervision, Funding 
acquisition. Yunzhong Si: Validation, Investigation. Yao Dong: Data 
curation. Xiao Huang: Project administration. Hongbo Li: Supervision, 
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is supported by the National Natural Science Foundation 
of China (62376252, 61976196, U22A20102), the Key Project of Nat
ural Science Foundation of Zhejiang Province (LZ22F030003).

References

[1] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, 
Qingyuan Li, Meng Cheng, Weiqiang Nie, et al., Yolov6: A single-stage object 
detection framework for industrial applications. arXiv preprint arXiv:2209.02976, 
2022.

[2] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao, Yolov7: Trainable 
bag-of-freebies sets new state-of-the-art for realtime object detectors, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2023, pp. 7464–7475.

[3] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, Jian Sun, Yolox: Exceeding yolo 
series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[4] Dillon Reis, Jordan Kupec, Jacqueline Hong, Ahmad Daoudi, Real-time flying 
object detection with yolov8. arXiv preprint arXiv:2305.09972, 2023.

[5] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai, Deformable 
detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv: 
2010.04159, 2020.

[6] Joseph Redmon, Ali Farhadi, Yolov3: An incremental improvement. arXiv preprint 
arXiv:1804.02767, 2018.

[7] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao, Yolov4: Optimal 
speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[8] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, Guiguang Ding, 
Yolov10: Real-time end-to-end object detection, 2024.

[9] Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao, Yolov9: Learning what you 
want to learn using programmable gradient information. arXiv preprint arXiv: 
2402.13616, 2024.

[10] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, 
Xinggang Wang, Vision mamba: Efficient visual representation learning with 
bidirectional state space model. arXiv preprint arXiv:2401.09417, 2024.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang- 
Chieh Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2018, pp. 4510–4520.

[12] Brett Koonce, Brett Koonce, Mobilenetv3, in: Convolutional Neural Networks with 
Swift for Tensorflow: Image Recognition and Dataset Categorization, 2021, 
pp. 125–144.

[13] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, Shufflenet: An extremely 
efficient convolutional neural network for mobile devices, in: In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 6848–6856.

[14] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun, Shufflenet v2: Practical 
guidelines for efficient cnn architecture design, in: In Proceedings of the European 
Conference on Computer Vision (ECCV), 2018, pp. 116–131.

[15] Sachin Mehta, Mohammad Rastegari, Mobilevit: light-weight, general-purpose, 
and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178, 2021.

[16] Yehui Tang, Kai Han, Jianyuan Guo, Xu Chang, Xu Chao, Yunhe Wang, 
Ghostnetv2: enhance cheap operation with longrange attention, Adv. Neural Inf. 
Proces. Syst. 35 (2022) 9969–9982.

[17] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, S.-H. 
Gary Chan, Run, don’t walk: Chasing higher flops for faster neural networks, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2023, pp. 12021–12031.

[18] Ao Wang, Hui Chen, Zijia Lin, Pu Hengjun, Guiguang Ding, Repvit: Revisiting 
mobile cnn from vit perspective. arXiv preprint arXiv: 2307. 09283, 2023.

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, 
Serge Belongie, Feature pyramid networks for object detection, in: In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 
pp. 2117–2125.

[20] Jun Chen, HongSheng Mai, Linbo Luo, Xiaoqiang Chen, Wu. Kangle, Effective 
feature fusion network in bifpn for small object detection, in: In 2021 IEEE 
International Conference on Image Processing (ICIP), IEEE, 2021, pp. 699–703.

[21] Shu Liu, Qi Lu, Haifang Qin, Jianping Shi, Jiaya Jia, Path aggregation network for 
instance segmentation, in: In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2018, pp. 8759–8768.

[22] Songtao Liu, Di Huang, Yunhong Wang, Learning spatial fusion for single-shot 
object detection. arXiv preprint arXiv:1911.09516, 2019.

[23] Yuen Peng Loh, Chee Seng Chan, Getting to know low-light images with the 
exclusively dark dataset, Comput. Vis. Image Underst. 178 (2019) 30–42.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, 
Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick, Microsoft coco: Common objects 
in context, in: Computer Vision–ECCV 2014: 13th European Conference, Zurich, 
Switzerland, September 612, 2014, Proceedings, Part V 13, Springer, 2014, 
pp. 740–755.

[25] S.M. Mark Everingham, Ali Eslami, Luc Van Gool, Christopher K.I. Williams, 
John Winn, Andrew Zisserman, The pascal visual object classes challenge: a 
retrospective, Int. J. Comput. Vis. 111 (2015) 98–136.

[26] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, 
Haibin Ling, Detection and tracking meet drones challenge, IEEE Trans. Pattern 
Anal. Mach. Intell. 44 (11) (2021) 7380–7399.

[27] Wenhan Yang Jiaying Liu Chen Wei, Wenjing Wang, Deep retinex decomposition 
for low-light enhancement, in: In British Machine Vision Conference, 2018.

[28] Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Walter J. Scheirer, 
Zhangyang Wang, Zhang, et al., Advancing image understanding in poor visibility 
environments: a collective benchmark study, IEEE Trans. Image Process. 29 (2020) 
5737–5752.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for 
image recognition, in: In Proceedings of the IEEE conference on Computer Vision 
and Pattern Recognition, 2016, pp. 770–778.

[30] Huang Gao, Zhuang Liu, Laurens Van Der Maaten, Kilian Q. Weinberger, Densely 
connected convolutional networks, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[31] Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7132–7141.

[32] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, Jongyoul Park, An 
energy and gpu-computation efficient backbone network for real-time object 
detection, in: In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition Workshops, 2019 pages 0–0.

[33] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun- 
Wei Hsieh, I-Hau Yeh, Cspnet: A new backbone that can enhance learning 
capability of cnn, in: Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops, 2020, pp. 390–391.

[34] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Designing network design 
strategies through gradient path analysis. arXiv preprint arXiv:2211.04800, 2022.

[35] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, 
Jian Sun, Repvgg: Making vgg-style convnets great again, in: In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 
pp. 13733–13742.

[36] Golnaz Ghiasi, Tsung-Yi Lin, Quoc V. Le, Nas-fpn: Learning scalable feature 
pyramid architecture for object detection, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2019, pp. 7036–7045.

[37] Songtao Liu, Di Huang, et al., Receptive field block net for accurate and fast object 
detection, in: In Proceedings of the European Conference on Computer Vision 
(ECCV), 2018, pp. 385–400.

[38] Zhang Dong, Hanwang Zhang, Jinhui Tang, Meng Wang, Xiansheng Hua, 
Qianru Sun, Feature pyramid transformer, in: Computer Vision–ECCV 2020: 16th 
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 
16, Springer, 2020, pp. 323–339.

[39] Siyuan Qiao, Liang-Chieh Chen, Alan Yuille, Detectors: Detecting objects with 
recursive feature pyramid and switchable atrous convolution, in: In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 
pp. 10213–10224.

[40] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, 
Alexander Kirillov, Sergey Zagoruyko, End-to-end object detection with 
transformers, in: European Conference on Computer Vision, Springer, 2020, 
pp. 213–229.

[41] Raja Sunkara, Tie Luo, No more strided convolutions or pooling: 
Anewcnnbuildingblockforlow-resolutionimagesandsmallobjects, in: Joint 
European Conference on Machine Learning and Knowledge Discovery in 
Databases, Springer, 2022, pp. 443–459.

[42] Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao, Yolov9: Learning what you 
want to learn using programmable gradient information. arXiv preprint arXiv: 
2402.13616, 2024.

[43] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu, Gcnet: Non-local networks 
meet squeeze-excitation networks and beyond, in: In Proceedings of the IEEE/CVF 
International Conference on Computer Vision Workshops, pages 0–0, 2019.

[44] Jongchan Park, Sanghyun Woo, Joon-Young Lee, In So Kweon, Bam: Bottleneck 
attention module. arXiv preprint arXiv:1807.06514, 2018.

W. Zhang et al.                                                                                                                                                                                                                                  Image and Vision Computing 151 (2024) 105271 

11 

http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0005
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0005
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0005
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0005
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0010
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0010
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0010
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0010
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0015
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0015
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0020
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0020
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0025
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0025
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0025
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0030
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0030
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0035
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0035
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0040
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0040
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0045
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0045
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0045
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0050
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0050
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0050
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0055
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0055
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0055
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0055
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0060
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0060
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0060
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0065
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0065
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0065
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0065
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0070
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0070
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0070
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0075
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0075
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0080
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0080
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0080
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0085
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0085
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0085
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0085
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0090
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0090
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0095
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0095
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0095
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0095
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0100
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0100
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0100
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0105
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0105
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0105
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0110
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0110
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0115
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0115
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0120
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0120
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0120
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0120
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0120
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0125
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0125
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0125
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0130
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0130
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0130
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0135
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0135
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0140
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0140
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0140
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0140
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0145
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0145
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0145
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0150
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0150
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0150
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0155
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0155
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0155
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0160
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0160
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0160
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0160
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0165
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0165
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0165
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0165
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0170
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0170
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0175
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0175
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0175
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0175
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0180
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0180
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0180
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0185
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0185
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0185
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0190
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0190
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0190
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0190
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0195
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0195
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0195
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0195
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0200
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0200
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0200
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0200
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0205
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0205
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0205
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0205
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0210
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0210
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0210
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0215
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0215
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0215
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0220
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0220


[45] Guoyu Yang, Jie Lei, Zhikuan Zhu, Siyu Cheng, Zunlei Feng, Ronghua Liang, Afpn: 
Asymptotic feature pyramid network for object detection, in: In 2023 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2023, 
pp. 2184–2189.

[46] Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, Xiuyu Sun, 
Damo-yolo: A report on real-time object detection design. arXiv preprint arXiv: 
2211.15444, 2022.

[47] Qibin Hou, Daquan Zhou, Jiashi Feng, Coordinate attention for efficient mobile 
network design, in: In Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2021, pp. 13713–13722.

[48] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu, 
Eca-net: Efficient channel attention for deep convolutional neural networks, in: In 
Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, 2020, pp. 11534–11542.

[49] Wei Xu, Yi Wan, Ela: Efficient local attention for deep convolutional neural 
networks. arXiv preprint arXiv:2403.01123, 2024.

[50] Su Daliang Ouyang, Guozhong Zhang He, Mingzhu Luo, Huaiyong Guo, Jian Zhan, 
Zhijie Huang, Efficient multi-scale attention module with cross-spatial learning, in: 
ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), IEEE, 2023, pp. 1–5.

[51] Yichao Liu, Zongru Shao, Nico Hoffmann, Global attention mechanism: Retain 
information to enhance channel-spatial interactions. arXiv preprint arXiv: 
2112.05561, 2021.

[52] Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7132–7141.

[53] Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So Kweon, Cbam: 
Convolutional block attention module, in: Proceedings of the European Conference 
on Computer Vision (ECCV), 2018, pp. 3–19.

[54] Qing-Long Zhang, Yu-Bin Yang, Sa-net: Shuffle attention for deep convolutional 
neural networks, in: ICASSP 2021–2021 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 2235–2239.

[55] Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, 
Kai Han, Gold-yolo: efficient object detector via gather-and-distribute mechanism, 
Adv. Neural Inf. Proces. Syst. 36 (2024).

[56] Xu Ma, Xiyang Dai, Yue Bai, Yizhou Wang, Yun Fu, Rewrite the stars. arXiv preprint 
arXiv:2403.19967, 2024.

[57] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, 
Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-cam: Visual explanations 
from deep networks via gradient-based localization, in: Proceedings of the IEEE 
international conference on computer vision, 2017, pp. 618–626.

Wenhao Zhang received the B.S. degree from Anhui Agricul
tural University, Hefei, China, in 2023. He is currently pursuing 
a M.E. degree in Computer Science at Zhejiang Normal Uni
versity, focusing on deep learning and computer vision, spe
cifically in object detection.

Huiying Xu received the M.S. degree from National University 
of Defense Technology (NUDT), China. She is an associate 
professor with the School of Computer Science and Technology, 
Zhejiang Normal University, and also the researcher of 
Research Institute of Ningbo Cixing Co. Ltd., PR, China. Her 
research interests include Kernel learning and feature selection, 
Object Detection, Vision SLAM, Computer vision, Image pro
cessing, Pattern recognition, Computer simulation, Deep clus
tering, Generative Adversarial Network, Diffusion Model, 
Clustering Ensemble, Multiple Kernel Learning, Learning with 
incomplete data and their applications. She is a member of the 
China Computer Federation. She has published papers, 
including those in highly regarded journals such International 

Journal of Intelligent Systems, IEEE Transactions on Cybernetics, IEEE Transactions on 
Multimedia, etc.

Xinzhong Zhu received the Ph.D. degree from Xidian Univer
sity and M.S. degree from National University of Defense 
Technology (NUDT), China. He is a professor with the School of 
Computer Science and Technology, Zhejiang Normal Univer
sity, and also the chief scientist of Beijing Geekplus Technology 
Co., Ltd. and president of Research Institute of Ningbo Cixing 
Co., Ltd., China. His research interests include Machine 
learning, Deep clustering, Computer vision, Object detection, 
Segmentation, Recognition and Tracking, Diffusion Model, 
Manufacturing informatiza-tion, Manufacturing informatiza
tion, Robotics and System integration, Laser SLAM, Vision 
SLAM, Low Quality Data Learning, Multiple Kernel Learning, 
and Intelligent manufacturing. He is a member of the ACM and 

certified as CCF distinguished member. Dr. Zhu has published more than 30 peer-reviewed 
papers, including those in highly regarded journals and conferences such as the IEEE 
Transactionson Pattern Analysis and Machine Intelligence, the IEEE Transactionson Image 
Processing, the IEEE Transactions on Multimedia, the IEEE Transactions on Knowledge 
and Data Engineering, CVPR, NeurIPS, AAAI, IJCAI, etc. He served on the Technical 
Program Committees of IJCAI 2020 and AAAI 2020.

Yunzhong Si received B.E. degrees from Hunan University of 
Technology, China. He is currently pursuing an M.E. degree in 
electronic information from Zhejiang Normal University, 
China. His current research focuses are centered around deep 
learning, computer vision, and object detection.

Yao Dong received the B.S. degree from Ningbo Tech Univer
sity, Ningbo, China, in 2023. He is currently pursuing a M.E. 
degree in Computer Science at Zhejiang Normal University, 
focusing on deep learning and computer vision, specifically in 
object detection.

Xiao Huang has received a PhD degree from East China Normal 
University. She is the Dean of the College of Education, the 
Joint Education Institute of Zhejiang Normal University and 
University of Kansas. She has worked as a professor in 2016, 
and also served as a PhD Supervisor and the Director of Science 
Education Research Center. She is the chief expert of Research 
Institute of Education Reform and Development in Zhejiang 
Philosophy and Social Sciences Key Cultivation Research Base, 
expert of international ISO standard TC/286/WG 4 for school- 
enterprise cooperation. Her research fields include STEM edu
cation, Nature of science and Scientific inquiry. She is the 
member of NARST(National Association for Research in Sci
ence Teaching), ESERA(European Science Education Research 

Association) and AAPT(American Association of Physics Teachers).

Hongbo Li received his Ph.D. degree in computer science from 
Tsinghua University in 2009. Currently, he holds the position 
of the Chief Technology Officer and Co-founder of Beijing 
Geek+ Technology Co., Ltd. China. In addition, he also serves 
as the secretary-general of Chinese Intelligent service Society 
and is an Editorial Board Member of several high-profile 
journals. His research interests include the design and appli
cation of intelligent robots, intelligent information process, and 
intelligent logistic systems. He has published more than 70 
papers in prestigious journals and conference, and has been 
awarded more than 120 patents, including 46 international 
invention patents.

W. Zhang et al.                                                                                                                                                                                                                                  Image and Vision Computing 151 (2024) 105271 

12 

http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0225
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0225
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0225
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0225
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0230
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0230
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0230
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0235
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0235
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0235
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0240
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0240
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0240
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0240
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0245
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0245
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0250
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0250
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0250
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0250
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0255
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0255
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0255
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0260
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0260
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0260
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0265
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0265
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0265
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0270
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0270
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0270
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0275
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0275
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0275
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0280
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0280
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0285
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0285
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0285
http://refhub.elsevier.com/S0262-8856(24)00376-7/rf0285

	RFSC-net: Re-parameterization forward semantic compensation network in low-light environments
	1 Introduction
	2 Related work
	2.1 Multi-branch feature extraction
	2.2 Multi-scale feature fusion
	2.3 Real-time object detector

	3 Method
	3.1 The design of the RSELAN structure
	3.1.1 The design of RepELAN
	3.1.2 Feature compensation branch

	3.2 Design of the FSCFF architecture
	3.2.1 The design of GCGEALN
	3.2.2 Integration of features at the same scale
	3.2.3 The design of ASFFLH


	4 Experiments
	4.1 Experimental setup
	4.2 Comparison experiment
	4.3 Ablation study
	4.4 Generalization experiment

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


